

Turning options into decisions

ralph.villiger@avance.ch

IP Valuation in Life Sciences

Budapest, November 27, 2008

Messages

- 1. Value increases in every stage
- 2. License contracts are closely related to the risk structure
- 3. Idea of sublicense terms

Agenda

- Risk adjusted net present value (rNPV)
- License contracts
- Sublicensing

Value

The value of a project/license is determined by its cash flows.

Cash Flows - Value

Cash flows are defined by

- Size (and sign)
- > Time
- Probability
 - > Size
 - > Event

The value is sensitive to these three properties.

Discount Rate - Cost of Capital

Indicates the rate at which investors want to be rewarded for the risk they take.

The discount rate contains

- 1. Time value: interest rate (2%-5%)
- 2. Risk aversion: risk premium (5%-20%)
- 3. (Qualitative aspects: premium)

$$V_0 = V_t^* (1 + discount)^{-t}$$

Discount Rate – Mechanism

NPV of 100 \$ at T=2 discounted at 5% p.a.:

$$NPV(T=0)=100*(1+5\%)^{-2}=100/(1.05)^2=90.7$$
\$

Discount Rate – Mechanism

NPV of 100 \$ at T=2 discounted at 11% p.a.:

$$NPV(T=0)=100*(1+11%)^{-2}=100/(1.11)^2=81.2$$
\$

DCF – Success Rates

- > Some cash flows are uncertain
- > The probability is given by the success rates

Example:

- > Head: 2 \$, Tail: 0 \$.
- > On average we receive 1 \$.
 - > We multiply the results with their probability.
 - ➤ Risk aversion is not yet considered, this is done by means of the discount rate.
- Multiply all cash flows with their probability

The value is the sum of all risk adjusted discounted cash flows.

3. Sum all adjusted cash flows

Turning options into decisions

risk-adjusted net present value:

risk adjusted net present value:

risk adjusted net present value:

risk adjusted net present value:

DCF - Names

NPV (net present value) = DCF (discounted cash flows)

With success rates:

- > rNPV (risk adjusted net present value)
- eNPV (expected net present value)

rNPV/eNPV is a simple decision tree, but it is not a real option.

Valuation Methods

- rNPV
- Decision Tree
- IRR
- Payback Method
- Comparables
- Real Options

Input Parameters – Costs

Who can afford to spend US\$ 1.7 BIO? Certainly no private biotech company. So, how is this number composed?

- It is assumed that for one marketed project you have to a start about 1,000 discovery projects: With US\$ 1.7 BIO you can therefore be sure to launch one project.
- Costs are assumed very high, including several indications.
- Costs of all projects are capitalized to launch date: Increase of costs instead of discounting.

Input Parameters – Costs

The figures below can be used as guidelines for drug development costs:

Cost
US\$ 2-3 mn
US\$ 2-3 mn
US\$ 1-5 mn
US\$ 3-11 mn
US\$ 10-60 mn
US\$ 2-4 mn

Pharma drug development 3-5x more expensive.

Input Parameters – Success Rates

NCE: Kola, Landis (nat rew drug dis, 2004), DiMasi (TUFTS)

NBE: Janice Reichert (TUFTS)

Input Parameters – Success Rates

Agenda

- > rNPV
- License contracts
- Sublicense terms

If the project is self-conducted or in-licensed, then we have large costs in the beginning.

The company has to invest before revenues arrive.

With a license contract, the licensor starts making revenues.

Part of the value is securitised before commercialisation.

Licencing in Life Sciences

Licensor: Access to ressources

- Non-dilutive capital
- Marketing
- Production
- Know-how

Licensee: Access to innovative products Risk management

- Diversification
- Securitisation

Licence Contracts - Structure

Payments

Upfront payment risk free

Milestone payments attrition risk

Royalties attrition risk and market risk

Development/Commercialisation

- Co-development
- R&D Funding
- Co-marketing/Co-promotion

Why to Value License Contracts?

- Define your negotiation leeway.
- Find out your partners negotiation leeway.
- Optimise your deals in terms of value, return, and risk profile.
- Benchmark your deals.
- Prepare rational arguments for the negotiation.

Agenda

- > rNPV
- License contracts
- Sublicense terms

Early-Stage Contracts (Sublicensing)

Licensee licenses the product again (sublicense)

In US\$ Mio	preclinical	IND	POC	Launch
Original terms	0.3	0.5	1	2 and 3%
Sublicense in prec	40%			
Sublicense at IND	0.3	30%		
Sublicense at POC	0.3	0.5	0.5 20%	
Sublicense at Launch	0.3	0.5	1	15%

If product exhibits better potential:

Licensor wants to participate

Of products exhibits worse potential:

Original terms should not prevent a deal

Early-Stage Contracts

- University of Queensland (AUS) licenses vaccine in early stage to CSL (AUS)
- CSL continues development
- Large potential recognised
- Sublicense to Merck (USA)

Licence Contracts - Weights

Book

Valuation in Life Sciences
Springer Verlag, 2007
2nd edition to appear in May 2008

